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Abstract. A stochastic reaction-diffusion equation, which describes the time evolution of  
a front of Concentration in a chemical System characterized by a single active component 
and influenced by the presence of external noise, is salved within the small noise appraxima- 
tion. T h e  Spatial correlations of concentration are studied. The relationship between the 
spectrum of the evolution operator and the correlation function is discussed and two 
examples (the trigger wave and the wave between a stable and an unstable state) are 
discussed. 

1. Introduction 

Front propagation is one of the possible relaxation mechanisms in a non-homogeneous 
system such that part of it is in a metastable or unstable state and another part is in  
a stable state. This phenomenon has been encountered in many situations in chemistry 
(for example in cold flame propagation (Zeldovich et al 1980) and in the well known 
Belousov-Zhabotynski reaction (Showalter ef al 1979)), biology (nerve conduction 
(Rinzel and Keller 1973)) and in many other areas of science (Peke 1988). 

In this paper we restrict our attention to chemical systems, which can be completely 
described by the concentration of a single active component. In the following we 
denote this concentration by n. It has been established in the pioneering mathematical 
work on front propagation (Kolmogoroff et a/  in 1937) that the travelling front between 
a metastable state and a stable state propagates with a unique velocity. Stable and 
metastable states may coexist if a chemical dynamic W(n)  is described by a polynom 
of the third (or higher) order in the concentration: 

W(n)  = - E ( n  - m , ) ( n  - m 2 ) ( n  - m J .  (1) 

However, a rich variety of interesting phenomena may also be observed for a simpler 
dynamic, which can be described by a polynom of the second order in n :  

w(n) = I  + a n  - p n ' .  (2)  
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For example, the quadratic dynamic describes a quite popular chain reaction 
(Kondratiev and Nikitin 1981), which consists of the following four elementary 
processes: 

F de Pasquale et a1 

I - X  initiation 

X f A X ' 2 X  chain branching 

A + x + M - - % P + M  chain termination 

X + X & X + A  recombination 

where X denotes the molecule of the active component, and A, P, M describe molecules 
of precursors and product. For the chain reaction the parameter a in equation ( 2 )  
denotes k , [ A ] -  k , [ A ] [ M ] .  In such an approach it is assumed that the reagents A and 
M are in excess, so their concentrations [A] and [MI  are homogeneous and time 
independent. The dynamics (2) may have two stationary states, one stable and another 
unstable. It may be shown that in this case the travelling front velocity is no longer 
unique and a new phenomenon appears-the dynamic selection of the front velocity. 
This subject was studied by Zeldovich (1948) and more recent results in this field have 
been obtained by Dee and Langer (1983), Ben-Jacob et al(1985) and by Van Saarloos 
(i988j. 

The aim of this paper is to study the correlations of concentration which may 
appear when the travelling front is influenced by the external noise. This problem is 
closely connected to the problem of front stability. Some interesting results in this field 
for the so-called Schlogl's second model of chemical reaction, for which the dynamic 
is given by equation (l) ,  were published by Schlogl and Berry (1980), Magyari (1982) 
and Schlogl e! a/ (1983). Here we present some, we hope, new results for the stability 
of a front between an unstable and a stable state for dynamics (2). Our attention is 
focused on the stability of a special analytical solution for such a front, which was 
first given by Kaliappan (1984). 

We also derive a formula for the correlation function of concentration in a front, 
which is perturbed by the presence of the external noise. Our approach is based on 

those obtained by Mikhailev et QI (1983), Schimansky-Geier ef al (1983) and Engel 
(1985). A general discussion of the application of the small noise expansion technique 
is presented in section 2, whereas section 3 is concerned with chemical fronts for the 
dynamics (1) and ( 2 ) .  

the "!! Gois. exp..sio. t.chr?lq.e and the resu!ts are s!ight!y more genera! than 

2. The concentration correlation function 

Let us consider a chemical system in which the concentration of an active chemical 
component n(r, 1 )  is a function of time t and position reRN.  The time evolution of 
concentration is governed by the following reaction-diffusion equation: 

(3) 
d n  
-= W ( n ) +  DV2n 
J t  

where D is the diffusion constant. 
Now let us assume that the system has been influenced by the presence of an 

external noise 7 since I =O. The time evolution of n ( r ,  1 )  is now described by the 
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stochastic reaction-diffusion equation 

an  
-= W(n)+DV2n+ E1'2G(n)?)(r, t )  (4) 
d l  

where G ( n )  and E describe the character and the strength of the noise. 
In the following we focus our attention on systems in which n(r, t )  is a non-uniform 

function along one direction in space (the variable corresponding to this direction is 
denoted by xl). We assume that asymptotically (i.e. for xI going to plus and minus 
infinity) n(r,  t )  approaches two different values n ,  and n Z ,  which are the stationary 
states of the dynamic W (i.e. W ( n , )  = W(n,)  =O). Furthermore, let us assume that for 
times f < O  the evolution of our system is described by a travelling front solution no 
of equation (3). 

It is convenient to describe no in the reference system, which moves together with 
the front by introducing the new variable y e r, - uf - r,o where U is the front velocity 
and r,o is the position of the front centre for f = 0. 

If the external noise, which perturbs the front motion, can be regarded as small 
we can apply the small noise expansion (Gardiner 1983) to solve equation (4). The 
solution can be written as the sum of no and of an additional small, noise-dependent 
term ril(r, 1 ) :  

n(r, ~ ) = n , ( y ) + ~ " ~ i i , ( r ,  I ) .  ( 5 )  
Substituting equation ( 5 )  in equation (4) and then selecting the terms with the same 
power of E we obtain 

d2n, dn  
D-+ u2+ W (  no) = 0 

dy2 dy 
which is just another form of equation ( 3 )  and another equation which gives the time 
evolution of the stochastic contribution to n(r, 1 ) :  

An equation similar to (7) but with a slightly different noise term was considered by 
Mikhailev et a/ (1983). They assumed that the strength of noise G is given by a 
functional derivative of dynamics W over the parameters, which fluctuate. In such an 
approach many different sources of noise were introduced. As we show below, the 
small noise expansion can be easily performed without specifying a particular source 
of noise. The generalization of equation (7) to a form which takes many stochastic 
terms with different kinds of noises into account is also simple and straightforward. 

It is convenient to use the variable y instead of xI in the perturbation term so we 
replace ril(r, I )  by function n ,  which is defined as 

(8) n,(y ,  r l , .  . . , r N ,  t ) =  n,(r, -ut-r , , , ,  . . . , r N ,  t ) =  ri,(r, I ) .  

The equation for function n , ,  which corresponds to equation (7), reads: 

n , + G ( n , ) q ( y + u t + r , ,  ,..., r N ,  1 ) .  (9) 
n=n"  

It can be easily solved if we know the spectrum of the operator 
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Let us note that eigenvectors of r are of the form exp(-i Z& q,q)+Jy), where 4 , ( y )  
is an eigenvector of the operator 

(11) 
" * " O b )  

r! describes the time evolution of a small perturbation of !he detecmlnistic so!ction 
n, along the direction of front propagation. If no is stable with respect to all perturba- 
tions, then any perturbation is damped and the spectrum of rl is non-positive. On the 
other hand, if no is an unstable solution of the wave equation then the positive 
eigenvalues may exist. r, is not Hermitian (except in the case v = O ) ;  however, its 
spectrum is related to the spectrum of the Hermitian operator 
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(12) 

If v and $ , ( y )  are eigenvector and eigenfunction of rlH then y =  v- u'/4D and 
$,(y)  = exp(-u,v/2D)JlU(g) are eigenvalue and eigenvector of r,,  It is important that 
{*&)] Form an orthogonal and complete set of vectors in the domain of I-,". Equation 
(9) can be easily solved if n ,  is decomposed in the basis { $ " ( y ) ] .  Let us note that 

N 

N 

J t  
N 

=(-. 1 _  i= ,  1 q;+y)(exp(i , .  . , ~ _  >=, z u j + ~ ) + ~ ( ~ ) ! n ~ )  

e?+, +,(Y) I G(no)l)(y+ur+rla,. . . , r . N , r )  

Equation (13 )  is a linear stochastic differential equation and its formal solution reads: 

(exoli , . , ~ . , - z ' , J  F a;r: + ~ \ l ~ . . , v i  D / ' ' " , , .  I n, \ ( t )  ,\-, 
j=2 j-2 

N 
+ (d ds  exp( ( - D  , -2  C q:+ v ) ( f  - s )) 

G ( ~ ~ ) ~ ( y + u f + r , ~  , . . .  , r N , s  )). (14) 

Solution (14) can be written for any noise if the stochastic integral over time can be 
properly defined. Let us note that it is exponentially divergent if -D Z,% qf+y>O. 

obtain the following expression for n, ( r ,  t): 
By exp.2dir.g thp, f:nc,tion e-p(t!y/QD)f::,(y) 0:: the hasis & ( y )  exp(iZ;N=, qfi) we 

nl(y, r 2 . .  . . , r N ,  0 

N q , r j + ~ ) ~ ~ ( y ) l n , ) [ ~ )  

x(exp( ~ ) $ , ( v )  I exp(z)d,(y))  (I51 
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where the summation over y covers all the spectrum of r,. By substituting equation 
(14) in equation (15) we arrive at the expression for n ,  as a function of time. 

However formula (14) is valid for a particular realization of the noise v ( r ,  1) .  The 
quantities which are averaged over all values of the stochastic term (this average is 
denoted as (( . . . ))) are more interesting, as they describe the observed behaviour of 
the system. Let us introduce the concentration correlation function S(r ,  z, t) defined 
as (Gardiner 1983) 

(16) 

In the case of a travelling front it seems more appropriate to describe correlations in 
the system of reference, which moves together with the front. If the initial conditions 
at the time f = 0 (i.e. when the external noise appears) are the same, then the concentra- 
tion correlation function is given by the following expression: 

S(Y,, r2, .  . . , rN, Y,, 2 2 , .  . . , ZN. t) 

S(r ,  5 t ) = M r ,  t M z ,  t ) ) ) - M r ,  r)))((n(s 1 ) ) ) .  

=( (n(y,+Ut+r, , ,  r 2 , .  . . , rN, t ) n ( y , + u t + r , , ,  2 2 , .  . . , zN, f ) ) )  

- ( (n(y ,+Uf+r , , ,  r , , .  . . , IN, t ) ) ) ( (n(y ,+ot+r , , ,  2 2 , .  . . , ZN, 1))) 

x( 1 dy, d a 2 . .  . da, dyh db, . . . dbN 

U p  to this moment we have not assumed any particular features of the noise ’7 except 
the existence of the stochastic integral in equation (14), and formula (17) although 
quite complicated is very general. It may h e  simplified if the statistical properties of 
7 are known. Let us assume that the average value of the noise ( (?(r ,  f ) ) ) = O  and that 
its correlations at different points of the system are described by the functions which 
depend on the distance between these points only: 

( (v ( r ,  O v ( r ’ ,  W)= C r ( r - r ” X - f ) .  (18) 
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Condition (18) means that the system is homogeneous with respect to the noise, and 
the different influence of the noise on the dynamic of chemical processes comes from 
the concentration-dependent term G(no(r ) ) .  The condition (18), although it allows for 
a separation of integration over time and space variables in equation (17), does not 
lead to a significant simplification. However, if the noise correlation function factorizes 
into the following product of contributions corresponding to different directions in 
space (for example, the correlations described by exp(-r2/ y )  considered by 
Schimansky-Geier e f  a1 (1983) and by Malchow and Schimansky-Geier (1985) belong 
to this class): 

F de Pasquale et a /  

N 

( d r ,  t ) ~ ( r ’ , f ‘ ) ) ) = C , ( f - f ’ )  n CJrj-ri) (19) 
j = l  

then the concentration correlation function can be transformed to a quite simple form: 

Sb., r , , .  . . , TN? Y., 2 2 , .  . . , Z N ,  t )  

= E  {ids  l ~ ~ d T ~ , ( 7 ) L L e x p ( ( t - s ) ( v + y , ) - y T )  Y Y I  

X[a/(D(2f -~S-T)) ] [~- ’ ) ’ ’  

For the white noise formula for the correlation function is very compact and it reads: 
P I  

In equations (17), (19) and (21) the summation is performed over the whole spectrum 
of r,. It is easy to prove (by differentiation of equation (9) with respect to y )  that 
zero is always an eigenvalue of rl and the corresponding eigenvector is &= dn,/dy. 
This solution is well known in the literature and it is called the ‘Goldstone mode’ (see 
for example Schlogl et a /  1983). The damping factor exp(-ys) is directly connected 
with the eigenvalue y.  Therefore the contribution from two Goldstone modes is not 
damped at all. The lack of front stability with respect to translations (the derivative 
dldy is a generator of the translation operator along the front propagation) can be 
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easily understood. The boundary conditions for the front are given only at infinity and 
there is no mechanism which stabilizes the position of the front’s centre. The physical 
sense of the Goldstone mode can be seen more directly if we apply the alternative 
description of the influence of noise on a chemical front by introducing a random 
function Cl such that 

n ( r ,  1 )  = ndy,+Cl(r, 1 ) ) .  

n(r, f )  = no(y,)+40(y,)Cl(r,  1 ) .  

(22) 

Assuming that the noise is small we may believe that O(r,  t )  is also small and therefore 

(23) 

By comparing equation (22) with equation (5)  one can see that 

Cl(r, I ) =  &(r, t)/4dy.). (24) 

The dispersion of E ( r ,  t)  gives us the measure of the dissipation of the front position: 

(((Wr, t))*)) 
=s(r, r, t )4iZ(yr)  

For the I D  case and when y = 0 is separated from the rest of the spectrum of rlH the 
contribution to S(r ,  r, t )  which comes from two Goldstone modes is the only one which 
is proportional to time and then the proportionality constant reads: 

can be interpreted as a ‘diffusion’ for spreading out the front from its deterministic 
position, It is interesting to note that B does not depend on r or time. However, such 
nice behaviour of ?2 is correct only in one dimension. If N = 2 the contribution of the 
Goldstone modes is proportional to t1 I2 ,  whereas for the higher dimensions the term 
( t  - S ) - l N - l ) / 2  makes the integral in formula (25) divergent. 

3. The inthence of noise for front propagation for quadratic and cube dynamics 

In this section we consider the noise-induced correlation function for two typical 
examples of chemical waves: the trigger wave which occurs between stable and 
metastable states and the wave which appears between the stable and unstable states. 
Our discussion is restricted to the I D  case; however, its generalization is easy and 
straightforward. 

Let us start with the trigger case (the dynamic W ( n )  is given by (1)) in which two 
stable states of the system are separated by the unstable state. The solution of equation 
(3) which at infinity approaches the different stable states is well known in the literature 
(Montroll 1972) and the velocity of the appearing front is equal to 

U = (a+c-26) .  (27) 
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For the numerical example let us consider the simplest case where the stable states 
are symmetric with respect to the unstable one and therefore tr = 0. By a suitable 
rescaling of variables (Magyari 1982) we can use 
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m ,  = 1 - (1 - K ) ” ~  m3 = 1 + (1 4. K ) ’ / 2  

and of course mz = 1. The solution no reads: 

n , ( y ) = l + ( l - ~ ) ” ~ t a n h ( ( ( l - ~ ) / 2 ) ~ ’ ~ y ) .  

The spectrum of rlH is also known (Magyari 1982). The Goldstone mode: +,,= 
sech‘ ( ( ( l -~) /2)”~y)  corresponds to y =O.  There exists the second localized mode for 
which eigenvalue equals: y ,  = -$(1- K )  and the eigenvector is 

= s i n h ( ( ( l - ~ ) / 2 ) ” ~ y )  sech2(((1-K)/2)”2y). 

The spectrum below -2( 1 - K )  I s  continuous. 
It is worthwhile adding that the properties of the spectrum of rIH strongly depend 

on the relative positions of the stable states with respect to the unstable one (Schlogl 
el a/ 1983). For a large front velocity the second discrete state $, may be found inside 
the continuous spectrum. 

Figures 1 and 2 show the contributions to the correlation function from the discrete 
modes. i n  the.numericai resuits presented it is assumed that G = i. As may be expected, 
the term from 4, rapidly saturates and the contribution from the Goldstone mode 
dominates. Therefore, if the Goldstone mode is separated from the rest of spectrum, 
the approximation, which takes into account the contribution from +o only, seems 
reasonable for large times. On the other hand, at short times the contribution from 
the other eigenvectors may be dominant, because the weight of contribution depends 
on the scalar product with G. This effect is shown in figure 2. 

Now let us consider a quadratic dynamic (equation (2)). The most interesting is 
the case in which two stationary states of W ( n )  exist. Let us denote these states by 
m, and m2 ( m ,  < mJ. Now dynamics (2) can be written as 

W ( n ) =  - y ( n - m , ) ( n  - m 2 ) .  (29) 

Time 

Figure 1. The contributions to the correlation function: S ( r =  I ,  r =  I ,  y = O ,  y ,  =0, I )  (the 
full line) and S ( r = l , r = 1 , y = - 3 ( 1 - ~ ) / 2 , y , = - 3 ( 1 - r ) / 2 , 1 )  (thedashed curve) f o r a  
trigger wave ( x  =0 .5 )  platted as a function o f  time. 
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Figure 2. The contributions 10 the correlation funclion: S(r, r, y = 0, yI = 0, t = 1 )  (the full 
curve)and S ( r , r , y = - 3 ( 1 - ~ ) / Z . y ~ = - 3 ( l - - ~ ) / Z , t = l )  (thedashedcurve) faratrigger 
wave ( K  = 0.5) platted as a fundion of I 

In equation (29) y has to be positive, because it is associated with the rate of 
recombination. Therefore m ,  is an unstable stationary state and m2 is a stable one. 
For dynamics (29) the corresponding stochastic reaction diffusion equation (equation 
(4)) reads: 

d f l  
(30) _-  - - y ( n -  m , ) ( n  - m 2 ) + D V 2 n + e " 2 G ( n ) l l ( r ,  1). 

a t  

By simple scaling of the variables one can transform equation (30) to a much simpler 
form. Introducing the reduced concentration 

n ' : = ( n - m , ) / m , ,  (31) 

where m,2 = m7 - m ,  and new time and position variables 

f'= t ( m r 2 y )  (32) 

x'= x( m , , y / D ) ' I 2  (33) 

one arrives at the standard form of the evolution equation: 

a n '  _- - - n ' ( n ' - 1 ) + V 2 n ' + ~  G ( m , 2 n ' + m l ) q ( r ,  t), 
at '  ymI2  

(34) 

In this coefficient-free form of stochastic reaction-diffusion equation the strength of 
the external noise scales by the factor ( y m : 2 ) - ' .  In the following, we restrict our 
discussion to equation (34); however, having in mind the transformations (31)-(33) 
one can always return to the original variables. 

Let us consider the case in which n ( x , ) +  m2 ( n ' +  1) for x,+-m and n ( x , ) +  m ,  
( n ' + O )  for xI +OD. As both the limiting values of concentration are stationary in time 
we may expect that transition from the unstable to the stable stationary state may be 
observed as a travelling front of concentration. The profile n' of a front which moves 
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with the velocity U’ in a system without the external noise ( E  = 0) is described by the 
equation 

F de Pasquale ef a1 

The scaled U and the original one U’ front velocities are related by the factor (Dm,,y) l iZ 
( ~ = u ’ ( D m , ~ y ) ~ ~ ~ ) .  

The dynamic (2), unlike the third-order chemical dynamics ( l ) ,  admits many 
solutions with different velocities. This can be clearly seen by invoking the following 
mechanical analogy. If we replace the space variable y by time and the concentration 
by position, then we find that equation (35) transforms to an equation of motion for 
a particle with a unit mass in a medium in which friction is proportional to velocity. 
A chemical dynamics represents a force. In such an approach the value of the front’s 
velocity becomes the friction coefficient. A chemical front between a stable and unstable 
state corresponds to a particle situated at the beginning close to x = O  which moves 
towards x = 1. If the friction coefficient is small then the particle will first cross x = 1 
and then return to this point. For large friction coefficients (i.e. large velocities of a 
front) the motion is strongly damped and there is no  overshooting. This example shows 
us that there exists a minimal front velocity for which the values of concentration are 
limited to the interval [m,, m2].  Of course the values of concentration remain inside 
this range for the fronts with velocity higher than the critical one. 

It is also easy to prove that the fronts with velocity larger than a critical value are 
stable with respect to small local perturbations. Let us consider a solution of equation 
(35): no(y) ,  for which velocity equals U’, and let us assume that its perturbation g(y ,  1 )  

can be written in the form 

(36) g ( x  f )  = h(y)  exp(-u’y/2+ y f ’ )  

by substituting (36) in (9) one finds that the function h should satisfy the equation 

( d 2 / 4 + 2 n o - l ) h  = yh, 
dzh -- 
dY2 

(37) 

If U’> U’* = 2  then the term d2/4+2n0- 1 is never negative because n o Z O .  Therefore 
the eigenvalue y cannot be positive. It shows that, within the linear analysis of stability, 
all the fronts with velocity not smaller than 2 are stable with respect to the local 
perturbations. The velocity U‘* = 2 is the minimal one, for which such stability appears. 
It has been proved by Aronson and Weinberger (1978) that this velocity is the one 
which actually appears in the systems with quadratic dynamics. 

The application of small noise expansion simplifies if an analytical solution of 
equation (35) is known. For the quadratic dynamics the analytical form of solution 
corresponding to U’* is not known, but there exists a solution for velocity only slightly 
exceeding U’* (Kaliappan 1984). 

Let us assume that there exists a solution n(y) of equation (35) for which the 
derivative can be expressed in the following form: 

dn _-  - uI nul+ u#. 
dY 

This, quite peculiar, assumption allows us to transform equation (35) into an algebraic 
form. A straightforward calculation shows that condition (38) holds if: U ,  = 1, wz =i, 1 
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U ,  = -(3)’” and U’ = ($)”’. The sol,ution for the front’s profile is 

nb(y’) = (1 + A  exp(y’/&))-2 (39) 
and the corresponding velocity equals (Kaliappan 1984) U’= 5/&= U’*($)’/‘ (or in 
the original variables U = 5 (Dm12y/&)’/’) .  The constant A in equation (39) depends 
only on the initial conditions. We may put A = 1 by choosing the reference system, in 
which n(y = 0) = 0.5. 

The solution (39), for which velocity is very close to the critical one, seems to be 
useful as a basis for an application of the small noise expansion and for studying the 
influence of external fluctuations on the front’s motion. To calculate the correlation 
function S we should know the spectrum of the operator r, (equation ( l l ) ) ,  so the 
following equation has to be solved: 

To estimate the range of y in which the continuous spectrum may appear, we perform 
the analysis similar to that presented by Schlogl et al (1983) for the trigger wave. Let 
us consider the following asymptotic (y+*m) form of solution of equation (40): 

where + and - signs correspond to y + + m  and y+-m. Substituting equation (41) 
in equation (40) and taking the boundary conditions for nb into account, we obtain 
the expressions for K+ and K-: 

(42) 

(43) 
First let us note that E- has to be equal to zero because otherwise +y is divergent in 
the limit y +  -a. To ensure the convergence of the first term of (41) - u ’ / ~ + K -  have 
to be non-negative so that y a -1. 

In the limit y + + m  the asymptotic form (41) gives the damped oscillations of ,#,7 

for y<-&. If Y E  [ -&, 13 then the functions 
The second term of the product in equation (41): (A ,  exp(K,y)+ R, exp(-K,y)) 

is of course a solution of equation (37), which is isomorphic with the Schrodinger 
equation for the potential 2n0+ d2/4-  1. The eigenvalue corresponds to the total 
energy. The oscillating solutions of equation (40) describe asymptotically (y + +m) 
free solutions of the Schrodinger equation; the energy of such solutions exceeds 
ut2/4- 1 =&. Let us also observe that if we use the wave profile corresponding to 
the minimal stable velocity, rather than nb, then the potential vanishes at infinity 
and the spectrum of oscillating solutions starts at y = 0- and it is not separated from 
the Goldstone mode. 

The eigenvectors with y < 0 are damped in time. The contributions from the positive 
eigenvalues are more important in formulae for the correlation function and the related 
quantities because these contributions lead to divergent terms. If such contributions 
exist the use of the small noise expansion is not justified. 

By introducing the new variable z:= (1 +tanh(y/2&))/2 one can transform 
equation (40) into the form 

&(Y) = ~ x P ( - u ’ Y / ~ ) ( A *  exp(K,y)+& exp(-K,y)) (41) 

K+ = ( y + & ) I ”  

K - = ( y + p )  . 
and 

49 1/2  

are uniformly damped. 

d2 d 
dz  dz 

z2(1 - 2 ) ’ 7 + 2 z ( l  -Z)(3 -2) -- 12( 1 -2 ) ’+6 (  1+ y )  
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Equation (44) can be transformed into the hypergeometric form if the following form 
of solution is assumed: 

F de Pasquale et a1 

+JZ) = (1 -z)”p*,(z)  (45) 

where 

q 2 -  5q+6( l -  y )  = O  

and 

p2+ 5p - 6 ( l +  y) =O. 

+7 defined by equation (45) should satisfy 

~ ( 1 -  z)+;+[2(3 +p)  - (p  + q+4)(p+ q -3)zl+b+ ( P  + 4+4)(p  + -3 )+ ,  =O. (46) 

Using the textbook solution of equation (46) one can write the following formula 
for +7 : 

q 5 r ( ~ )  =A,( 1 -~) ‘z”F(p+q -3, p + q  +4,2(3 + p ) ,  t) 

+A2(1 - Z ) Y - ~ F ( ~  - 2p - 8, p -2q - 1, -4-2q, Z )  (47) 

where F denotes the hypergeometric function. For a regular solution both the powers 
at z and 1 - z must be non-negative. If a solution in the form (47) is supposed to be 
bounded its parameters q and p have to satisfy one of the conditions 

p + q - 3 =  - I  (48) 

0 1  

q -2p - 8 = - I  (49) 

where I E M .  It is easy to note that there are no bounded solutions corresponding to 
(49). If q and -p-5 are to be non-negative then of course q-2p-8  must be positive. 
On the other hand we can easily find two solutions, which satsfy (48). For I = 0 we have 

p = 1 , q = 2  ( y = O )  and $o= 1 (the Goldstone mode) 

and for I = 1 the solution reads 

p=1 .5  q=o.5 ( y = d  and *s,s = 3 -22. 5 

Each of these solutions given above, if written in the form (36), leads to a function h 
which is exponentially divergent for y + +m. Therefore these functions do not belong 
to the set of solutions of equation (37). The corresponding function g ( y ,  1 )  is not local; 
it extends over the whole space. 

Let us observe that the second solution describes a perturbation of nb which is 
exponentially divergent in time. It shows that the special analytical solution (39) is 
not stable against non-local perturbations and it cannot be used as a basis for the 
small noise expansion. On the other hand, if the solution corresponding to U’* is used 
in the small noise expansion then the Goldstone mode is not separated from the 
continuous spectrum. In this case the expression for the correlation function should 
contain the summation over the spectrum around y = 0. Therefore the method in which 
the contribution to the front propagation from the Goldstone mode is separated from 
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the others and it is assumed to be dominant (Mikhailev et al (1983). Schimansky-Geier 
et nl (1983)) cannot be applied to systems with quadratic chemical dynamics. 

4. Conclusions 

The reaction-diffusion equation, supplemented by a stochastic term, may be applied 
to describe the time evolution of a chemical system under the influence of the external 
noise. However, such an approach usually leads to complicated stochastic differential 
equations, which are very difficult to solve. The small noise expansion seems to be a 
useful approximation which enables one to write such an equation in a linear form, 
so that the standard methods of solution for linear stochastic equations can be easily 
applied and further calculations of relevant quantities possible (here the correlation 
function for concentration). We are aware that the actual meaning and validity of this 
expansion are not trivial (Gardiner 1983). The sensibility of the expansion depends 
critically on the form of the chemical dynamics and on the character of the initial 
state. Generally speaking, the small noise expansion seems to be justified if the dynamics 
W and the initial state of the system ensure convergence to a single stable state. 

In this paper we discussed the application of the small noise expansion for the 
description of the correlations, which may appear around a randomly perturbed 
chemical front. The results presented above generalize those obtained by Mikhailev 
et al (1983) and by Schimansky-Geier er al (1983) because they are not restricted to 
the contribution from the Goldstone mode only. The simplification used by these 
authors seems to be justified in the case when the Goldstone mode is separated from 
the continuous part of spectrum of r lH.  In this case it is possible to consider separately 
the perturbations of the shape and of the position of a travelling wave. We have also 
shown that in the case of the quadratic chemical dynamics such separation is no longer 
valid for the analytical solution due to Kaliappan (1984) and for U* = 2. 

Finally, we would like to mention that application ofstochastic differential equations 
seems to be the most straightforward description of the stochastic correlations in a 
randomly perturbed chemical front. Nevertheless it is also possible to adapt the 
alternative formalism based on the Fokker-Planck equation (Gardiner 1983). 
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